
Guardant Code API
While developing the loadable code there is a high probability that you may face the necessity to address the dongle resources located in area EEPROM
(protected items, algorithms) or the timer. Therefore, a special Guardant Code API was developed (See Guardant API help system, file). The GrdAPI.chm
library of this API contains most functions of Guardant API adapted for the use from within the loadable code.

The main issue while working with lies in the fact that the handle of protected container inside the loadable code loses its sense, since Guardant Code API
this code, first, has access only to one dongle and, secondly, there can be no situation of competitive access to dongle resources from various streams of
one application and from various applications.

Also, the HANDLE type parameter is transferred to the functions of internal API of the loadable code. This is done in order to maintain consistency and
ensure the convenience of debugging the loadabable code.

Guardant Code API supports the main Guardant API functions, related to storing data and working with the algorithms.

Besides, there is a capability of calling encryption algorithms from the API of loadable code not using the descriptors but directly, similar to the way
software-based algorithms are called in Guardant API. For this a special reserved algorithm name is specified to the item containing the descriptor instead
of a numerical name.

If Guardant API functions are present in the loadable code (for instance, an algorithm which was previously protected by Guardant dongles is transferred
into a dongle), then for most of these functions there is an analog in Guardant Code API and porting will be confined to the change of prefix from GrdXXX
to GcaXXX or GccaXXX.

Function Description

GcaCrash()

GcaExit() Exiting the loadable code

GcaLedOn() Turning LED on

GcaLedOff() Turning LED off

GcaRead() Read EEPROM data, GrdRead() analog

GcaWrite() Write EEPROM data, GrdWrite() analog

GcaPI_Read() Read protected item data, GrdPI_Read() analog

GcaPI_Update() Read protected item data, GrdPI_Update() analog

GcaPI_GetTimeLimit() Receiving the remaining algorithm operating time

GcaPI_GetCounter() Get algorithm counter value, GrdPI_GetCounter() analog

GcaGetTime() Get dongle’s timer state, GrdGetTime() analog. For Guardant Code Time only

GcaGetRTCQuality() Real time clock testing

GcaGetLastError() Receiving the last error code

GccaCryptEx() Data encryption, GrdCryptEx() analog

GccaSign() Generate the digital signature, GrdSign() analog

GccaVerifySign() Verify the digital signature, GrdVerifySign() analog

GccaGenerateKeyPair() Creating key pairs

GccaHash() Calculate hash, GrdHash() analog

GccaGetRandom() Random number generation

GcaSetTimeout Setting the maximum allowed loadable code operating time

GcaCodeGetInfo Request information from the loadable code descriptor

GcaCodeRun Real time clock (RTC) testing

https://dev.guardant.ru/display/PUB/Code+selection+for+placing+in+the+dongle

Important information

Since GSII64 algorithm and its derivatives (HASH64, RAND64, etc.) are not implemented in Guardant Code, you will probably have to rework the existing
protection scheme for the use of AES128 algorithms for encryption and SHA256 for hashing. All other capabilities of the previous dongle models are
present in Guardant Code.

	Guardant Code API

