
1.
2.

.NET Assemblies protection

Sequence of protection
Two console utilities are used for the automatic protection of .NET assemblies:

Utilite Purpose

CodeObfuscator.exe MSIL simbol obfuscation and string encryption

CodeProtect.exe MSIL code encryption

You can use the and utilities collectively or use one of them separately. However, a specific sequence for using the CodeObfuscator.exe CodeProtect.exe
utilities must be followed – first the application needs to be obfuscated and only then proceed with code protection:

1st stage of protection: obfuscation and encryption of .NET assemblies
2nd stage of protection: code protection of .NET assemblies

Principle of protection
A twostage protection approach is used for the automatic protection of .NET assemblies with each stage performing its own tasks in the overall process:

MSIL code symbol obfuscation
Transfer of a portion of MSIL-code into a protected storage

This concept permits a significant increase in the overall level of .NET protection, since the widely distributed .NET reverse engineering tools (ildasm, reflect
, etc.) become useless.or.net

It is predicated upon the fact that most of .NET assembly’s code is stored in the protected native container, which in turn is protected by both pseudocode
(software) and the dongle’s functionality (hardware solution).

When MSIL code previously encrypted by a hardware algorithm is called, the dongle itself is addressed first for decryption purpose and only after the
execution of code begins.

Limitations of protection
Assemblies with mixed code and multimodular assemblies are not supported.
See the limitations for autoprotection of executable Native files.

Guardant dongle is a highly effective mean of software/hardware protection. It allows building protection of virtually any level of complexity and
tamperproofness.

Use the symbol obfuscator and MSIL-code protection utility. It is also reasonable to use the following options:

Symbol obfuscation. It allows obfuscating the application code, which when coupled with other measures significantly increases the level of
application protection. Use the obfuscation for all *.exe and *.dll assemblies in the application, except for the third-party applications and
applications signed by digital signature.
String encryption. Ties the obfuscated application to the Guardant dongle and encrypts the string constants in the protected assemblies. It is
recommended to use this option if there are no logical elements, significantly depending on the speed of string constants.
When the is used a complete obfuscation of all the assembly occurs. However be careful, the use of this option public interface obfuscation option
is possible only with the looped system (all assemblies are obfuscated in one session and no methods of obfuscated assemblies from other
applications are not used). In most of the cases it is safe to conduct the obfuscation of public interfaces for exe-assemblies (except for the cases
of using the Reflection technology on the assembly itself or exporting types for other applications).
Use the exclusions file. Use ExclusionUtility.exe utility in the Developers’ Kit to generate this file. Generally, the developer needs to have a clear
understanding of types, methods and properties that need to be included as exclusions for the symbol obfuscator. As a rule, these are all the
language elements that can be used from within. You should pay attention to the use of Serialization, Reflection, Data Binding technologies.

You have to remember the following when using the MSIL-code automatic protection utility:

Wisely use the . The large and more complex the protected application, the less is the option indicating the percentage of protected methods
necessity to indicate the percent. Generally, you may set 100 percent for the most simplistic assemblies not sensitive to the execution speed,
containing 2-3 types with 10-15 methods each. For large projects the % should be lowered to 10.

https://dev.guardant.ru/display/PUB/Code+obfuscation+and+encryption+of+strings.+CodeObfuscator.exe
https://dev.guardant.ru/display/PUB/Protection+of+.NET+assembly+code.+CodeProtect.exe
http://reflector.net
http://reflector.net

Do not protect assemblies, types and methods . Remember that MSIL-code transfer to the encryption area and sensitive to the execution speed
execution of it on a virtual machine may in some cases slow down its execution (especially during the first call). Further calls may also incur some
overheads, therefore, the less the size of the method, the more obvious is the execution speed loss.
Use the . Exclude from protection all small methods not containing logic and holding commercial value.option and utility for setting exclusions
When working together with symbol obfuscator you need to use (see).MAP-file creation option Of the present documentation for details
Exclude all language elements based on . MSIL-code protection of such elements may lead to unpredictable results.asynchronous data transfer

Code obfuscation and encryption of strings. CodeObfuscator.exe
Obfuscator options summary tables
Obfuscator Options

Performing symbol obfuscation of a .NET assembly
Using the obfuscator's exclusions file
Obfuscation of the public interfaces of a .NET assembly
Encrypting the string constants of a .NET-assembly
Creating the secure storage
Generating exceptions when problems with the dongle occur
Generating an xml-file with obfuscation results

Protection of .NET assembly code. CodeProtect.exe
Obfuscator options summary tables _1
CodeProtect.exe Options

Creating the secure storage location, if it was not previously created
Setting the percent of protected .NET-assembly methods
Using the CodeProtect.exe inclusions file
Using the CodeProtect.exe exclusions file
Using an xml-file with obfuscation results
Generating exceptions when problems with the dongle occur _1

Generating .NET autoprotection exclusion files. ExclusionUtility.exe

https://dev.guardant.ru/display/PUB/Code+obfuscation+and+encryption+of+strings.+CodeObfuscator.exe
https://dev.guardant.ru/display/PUB/Obfuscator+options+summary+tables
https://dev.guardant.ru/display/PUB/Obfuscator+Options
https://dev.guardant.ru/display/PUB/Performing+symbol+obfuscation+of+a+.NET+assembly
https://dev.guardant.ru/display/PUB/Using+the+obfuscator%27s+exclusions+file
https://dev.guardant.ru/display/PUB/Obfuscation+of+the+public+interfaces+of+a+.NET+assembly
https://dev.guardant.ru/display/PUB/Encrypting+the+string+constants+of+a+.NET-assembly
https://dev.guardant.ru/display/PUB/Creating+the+secure+storage
https://dev.guardant.ru/display/PUB/Generating+exceptions+when+problems+with+the+dongle+occur
https://dev.guardant.ru/display/PUB/Generating+an+xml-file+with+obfuscation+results
https://dev.guardant.ru/display/PUB/Protection+of+.NET+assembly+code.+CodeProtect.exe
https://dev.guardant.ru/display/PUB/Obfuscator+options+summary+tables+_1
https://dev.guardant.ru/display/PUB/CodeProtect.exe+Options
https://dev.guardant.ru/display/PUB/Creating+the+secure+storage+location%2C+if+it+was+not+previously+created
https://dev.guardant.ru/display/PUB/Setting+the+percent+of+protected+.NET-assembly+methods
https://dev.guardant.ru/display/PUB/Using+the+CodeProtect.exe+inclusions+file
https://dev.guardant.ru/display/PUB/Using+the+CodeProtect.exe+exclusions+file
https://dev.guardant.ru/display/PUB/Using+an+xml-file+with+obfuscation+results
https://dev.guardant.ru/display/PUB/Generating+exceptions+when+problems+with+the+dongle+occur+_1
https://dev.guardant.ru/display/PUB/Generating+.NET+autoprotection+exclusion+files.+ExclusionUtility.exe

	.NET Assemblies protection

